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Abstract

When dealing with acoustic signals, the environment in which the signal propagates

a¤ects the signal in measurable ways. These e¤ects lead to echoes, changes in amplitude,

and sometimes a con�uence of other signals which may render the signal useless in terms of

information retrieval. When considering acoustics in terms of pressure changes due to the

driving signal, we are able to model and measure the e¤ects of the environment on a given

signal. Once this model is known, we are able to completely invert the environmental

transfer enacted on the signal and �lter out other signals, as long as some assumptions are

held in the implementation of this procedure.

vii



ENVIRONMENTAL ACOUSTIC TRANSFER FUNCTIONS AND THE

FILTERING OF ACOUSTIC SIGNALS

I. Introduction

1.1 Background

Signal processing is the method of taking a given signal and extracting useful in-

formation, usually by a means of a transformation of some kind. Acoustic signals are

functions of time in which the output is a pressure or a velocity potential response. An

acoustic signal is a¤ected by the environment in which it propagates, so one can attempt to

remove the environmental e¤ects to extract the useful information, in this case the original

signal. The classic example of this problem and how the human brain deals with it is

called the Cocktail Party Problem (3). Imagine yourself in a room full of people, where

di¤erent conversations are happening all around you, and you attempt to either participate

in a conversation around you or listen to a conversation near you. Somehow, your brain

processes this multitude of signals by localization techniques and �lters the information

in such a way as you are able to ignore these extraneous conversations and concentrate

on a particular conversation. This thesis will derive, in a mathematical framework, the

process of �ltering extraneous signals in a way that yields the original signal, and will then

apply this process to the Cocktail Party Problem in an attempt to describe how useful this

ability can be.

This ability has many applications in both the Department of Defense and commer-

cial industries. Considering an acoustic signal to be a form of information, the basic

purpose of �ltering the received signal is to retrieve the original information, such as in

intelligence gathering. One use for the Department of Defense is the use in "bugging" a

room with listening devices that record the information being disseminated in, for example,

a terrorist meeting. If a number of people conversing in a meeting, the received signal

will be the sum of these signals at their respective locations. Taking into consideration

their di¤erent locations, the recording can begin to sound quite garbled and unintelligible.
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Since this process is being treated as information retrieval, this garbled recording would

simply be useless information. By �nding a method for separating the signals and remov-

ing environmental e¤ects, the original information would then be recovered, potentially

containing useful information.

The private sector also has many uses for this method, and while none of them

may not have as direct an impact on our daily lives as the defense application, they can

be helpful at a relatively low cost from a computing standpoint. Consider a boardroom

meeting transpiring in a room. While at most times, there will only be one person talking,

there may be at other times many people talking at once, arguing with each other. This is

when the application of this signal processing will become most useful. The entire meeting

could be recorded with every word clearly spoken and usable for future reference. Also,

consider the explosive proliferation of cellular phones in the past decade. While in most

cases, cellular phones are easy to use, there are some noisy environments in which they are

practically useless. The user of the phone can eliminate this problem by using an earpiece,

sending the signal directly to his or her ear, but the person on the other end of the line is

still stuck with the multitude of signals entering the mouthpiece of the phone. One way

to eliminate these sounds would be to �lter the other voices out of the incoming signal, by

somehow correlating the user�s voice with an amplitude function or some other way and

to then �lter the sounds by software included in the phone. One product currently on

the market that performs this task is a mobile phone headset called Jawbone. Jawbone

uses technology developed by DARPA to correlate the motion of the user�s jawbone with

the signal being received. When the user�s jawbone is not moving, the headset e¤ectively

turns o¤ and uses the ambient sound being received during this time to create a noise

�lter for use when the user is talking. This is a perfect example of this technology being

marketed in the private sector (1).

1.2 De�nitions

This section presents and de�nes certain terms which are used throughout this thesis.
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Environment refers to the �nite region of in�uence acting on a signal. In the math-

ematical depiction of the problem, this will be replaced by the domain with boundary

conditions.

Attenuation is the e¤ective reduction in amplitude of a signal caused by environ-

mental factors. For the purposes of this thesis, attenuation will be described as either

atmospheric or boundary.

Isothermic describes the property of a medium having a uniform temperature, i.e.

the temperature gradient with respect to the three spatial variables and time is equal to

zero.

Isobaric describes the property of a medium having a uniform pressure density, i.e.

the dispersion of the medium�s constituent gases is constant throughout the environment.

The coe¢ cient of re�ection is the ratio of the energy of a wave after encountering a

barrier to its original energy. While the coe¢ cient of re�ection can take complex values,

the examples in this thesis deal only with real-valued coe¢ cients. This implies that

there is no phase shift, or modulation, on the signal when encountering a boundary, only

attenuation.

Ultrasonic describes a frequency above the human threshold of hearing.

A Source is the origin of a signal, which will be a person speaking, unless stated

otherwise.

A Receiver is the instrument with which a recording of an environmentally altered

signal will be made. For the purposes of this thesis, a receiver will refer to an omnidirec-

tional microphone unless stated otherwise.

Transfer Function refers to the rule by which an environment a¤ects a signal. It is

our goal to �nd the transfer function of a given environment.

1.3 The Problem

An acoustic signal can be distorted in a number of ways by an environment, thereby

making information contained within the signal less accessible. The e¤ect of the environ-
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ment must be determined in order to retrieve the original information. This thesis pursues

those goals by �nding solutions to the following three problems:

1. Problem 1 is de�ned as that of �nding and inverting the room transfer function.

2. Problem 2 is de�ned as the problem of �ltering di¤erent signals being transmitted

at once.

3. Problem 3 is de�ned as retrieving the signal of a mobile source.

1.4 Research Objectives

This thesis develops a rule for environmental e¤ects on a signal, as well as a rule

for removing these e¤ects. This removing, or �ltering, enables us, to a certain degree, to

separate out multiple time-dependent signals into separate, whole signals containing the

original information contained in each signal.

1.5 Scope

The results of this thesis enable us to determine under which conditions a �ltering

operation can successfully be performed on a set of received signals. While Problem 2 is

primarily concerned with the two-receiver/two-source case, this can be applied to numerous

other cases, such as multiple (more than two) signals and signals with a variable location

(from here on, referred to as mobile sources for the purpose of this thesis).

The results of Problem 2 also lead to a development of a rule for judging how "good"

a �lter is, based on the condition number of the matrix of transfer functions.

While the scope of the thesis seems somewhat narrow at the beginning, the �ndings

can be broadened to apply to a general case (the most general of which is the Cocktail Party

Problem with no limitations on source locations). The bene�t of directional microphones

in this setting is discussed, but not implemented in the mathematics.
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1.6 Approach

The approach to the very basic problem of �nding the room transfer function is

that of solving the three-dimensional wave equation modi�ed to incorporate atmospheric

attenuation. The boundary conditions and initial conditions are developed in the latter

part of Chapter II.

1.7 Thesis Outline

This thesis takes a bottom-up approach. Chapter II deals with a literary review of

most of the concepts and topics discussed in this introductory chapter. Chapter III begins

with a statement of the foundational assumptions made in solving this problem, as well

as detailing the solution to the initial problem. Finally, the results of the core problem

of �nding the room transfer function are extended in the same mathematical framework

to the �ltering problem (Problem 2) and the tracking problem (Problem 3). Chapter IV

discusses the implementation of this process on a speci�c situation where numerical values

are assigned to the parameters used in the derivation of the solution to the initial problem.

Chapter V summarizes the �ndings of this thesis as well as presenting recommendations

for future research in this area.
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II. Literature Review

2.1 Introduction

This chapter consists of a literary review of the two basic aspects of the three prob-

lems. The �rst part consists of a review of the fundamental aspects of acoustics and how

di¤erent environments a¤ect a signal. This will deal primarily with part of Problem 1,

that of �nding the room transfer function. The second part will consist of a review of

�ltering techniques and processes, which generalizes the transformation used in Problem

1 to a more complicated system.

2.2 Fundamentals of Acoustics

2.2.1 A De�nition of Sound. Before beginning the goal of determining a rule

by which an environment a¤ects an acoustic signal, a description of sound must be given.

"The whole study of sound is the study of vibrations" (8:36). By this one sentence, written

in one of the most proli�c texts on acoustics, a great deal can be deduced. The key

word in this sentence is "vibrations". When considering the mathematical description of

vibrations, the likely tool for describing them will be the trigonometric functions because of

their oscillating qualities. Morse begins his description of what sound really is by speaking

of an oscillating system, using the example of a spring-mass oscillator. By introducing this

example, he shows that in a real-world oscillating system, there is dampening caused by

friction (8:37). In an acoustic environment, this dampening is the atmospheric attenuation.

2.2.2 Measuring Sounds. Now that sound has been de�ned the system in which

it propagates has been described, a method to quantify these e¤ects must be discussed.

Thus far, the environment has simply been described as air and been called a medium of

propagation. Since air is composed of gases, it follows the laws of �uid dynamics, and

so these laws must be used to describe the e¤ect of a signal on the air. A �uid has a

number of characteristics that determine how it behaves. In this case, the �uid density,

the pressure, and the temperature are the key factors that determine how a wave will

propagate through this �uid. When discussing the propagation of a wave, there must be

a way to quantify the magnitude of the wave�s e¤ects at a spatial point in the environment
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at a certain time. Since the direct measurement of temperature and density is rather

di¢ cult, it is more e¢ cient to measure the amplitude by its pressure. Measurements

of pressure are also more accurate than those of temperature and density (8:229). The

familiar measurement of the intensity of sound, decibels, is a logarithmic measurement of

pressure. It is in this framework of pressure changes caused by sound waves that a signal

and the environment�s e¤ects are measured.

2.2.3 Deriving the Wave Equation. Speaking in the framework of pressure,

Morse derives the wave equation from a succession of equations used to describe the law

of conservation of mass and the law of conservation of momentum in a �uid. For a �uid,

the law of conservation of mass in three spatial dimensions is

@�

@t
+r � �~� = 0 (2.1)

and the law of conservation of momentum is

�

�
@~�

@t
+ (~� � r)~�

�
+rp = 0 ; (2.2)

where � = � (~x; t) is the particle density of the �uid at location ~x at time t, ~� (~x; t) is

the particle velocity in the �uid, and p (~x; t) is the �uid pressure. Since the environment

consists of a homogeneous �uid, then

� (~x; t) = � = c (2.3)

for some constant c > 0. In a �uid, the pressure is a function of the particle density, so

de�ne f such that

p = f (�) : (2.4)
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This de�nition is called the equation of state. These parameters can be linearized about

initial conditions such that

p (~x; t) = p0 + p̂ (~x; t) (2.5)

� = �0 + �̂ (2.6)

~� (~x; t) = �0 + �̂ (~x; t) (2.7)

where �0 = 0 since the initial conditions are quiescent. Using these linearized functions,

the equations of mass, momentum, and state can be restated as

@�̂

@t
+ �0r � �̂ = 0 (2.8)

rp̂+ �0
@�̂

@t
= 0 (2.9)

p̂ = c2�̂ : (2.10)

Taking the derivative with respect to time of the equation of mass above, the following

equations are found

@2�̂

@t2
+
@

@t
(�0r � �̂) = 0 (2.11)

@2�̂

@t2
� @

@t
(�0r � �̂) = �p̂ ; (2.12)

and the equation relating the particle density and pressure emerges as

@2�̂

@t2
= �p̂ ; (2.13)

but the equation of state can be resubstituted back into this equation, leaving the familiar

wave equation

�p̂� 1

c2
p̂tt = 0 : (2.14)

2.2.4 Attenuation�Atmospheric and Boundary. In Chapter I, attenuation is

de�ned as the reduction in amplitude of an acoustic signal. Going back to Morse�s example

of an oscillating spring, he describes the friction in this system as a resistance to a change
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in inertia of the medium. In the acoustic setting, this friction is the resistance of air

molecules to a displacement, thereby reducing the energy of the signal by a reduction in

amplitude, which is the de�nition of attenuation. The amount of attenuation is given by

a vector �, which de�nes the amount of attenuation in the directions of the domain. In

this case, the vector has constant components, all of which are equal such that

~� = 2�

26664
1

1

1

37775 . (2.15)

This implies that there is no directional dependence in atmospheric attenuation. This

assumption is justi�ed in that the propagational environment is isothermal and isobaric,

with no �uid �ow. Since this attenuation takes places as the signal propagates through

space, its e¤ect on the pressure in the sound wave can be described using the gradient of

the pressure. The pressure caused by the wave is decreased as the wave passes through

space, and so the atmospheric attenuation can be given by the expression

~� � rp = 2� (px + py + pz) . (2.16)

In the di¤erential equation developed in later sections, this term is added to the wave equa-

tion, giving a modi�ed form for the wave equation which takes into account atmospheric

attenuation.

The atmospheric attenuation is not the only source of attenuation, however�in this

setting there also exists boundary attenuation. In the case of the oscillating spring mass

system, consider a second spring set at the lowest point at which the oscillating spring

will reach in an oscillation. When the mass interacts with the boundary, it will encounter

resistance to any further displacement by this second spring. This resistance will e¤ectively

reduce the energy of the oscillating spring, thereby reducing the amplitude of the next

oscillation. Now, translating this idea to the acoustic setting, the signal will reach a

boundary and will �nd a resistance to a change in inertia. This resistance will, analogous
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to the oscillating system, cause a reduction in amplitude, thereby attenuating the signal

at the boundary.

The comparison to a spring on the boundary is fairly accurate. The spring constant

translates to an impedance on the boundary, which characterizes how much sound the

boundary absorbs and how much is re�ected. If we assume that the boundary re�ects

a signal with constant attenuation, that is, no frequency dependence and no phase shift,

then the coe¢ cient of re�ection of a boundary is a real, positive constant. A re�ective

coe¢ cient of � leads to the Robin boundary condition

@p

@n
= �p (2.17)

where @p
@n denotes the outward unit normal derivative of pressure with respect to the

boundary. The left-hand side is the re�ected signal and the right-hand side is the original

signal.

A coe¢ cient of re�ection approaching in�nity implies that the boundary absorbs

all of the incident wave energy and none is re�ected. This complete attenuation of the

incident signal is described by

p = 0. (2.18)

The most realistic case is that of a boundary that absorbs some, but not all of the

signal, and so the re�ected wave undergoes a reduction in amplitude. This boundary

condition is given by
@p

@n
= �p (2.19)

where � is the re�ective coe¢ cient of the boundary. The re�ection coe¢ cient can be a

function of frequency, attenuating di¤erent frequencies by di¤erent amounts, but for the

purposes of this thesis, � is a positive, real constant.

2.2.5 Forcing Functions. Consider an atmospheric environment with isothermal

and isobaric properties. Since the temperature and pressure gradients are both equal to

zero, then the system will be at rest until another force acts on the environment if the initial
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conditions are quiescent. In this case, there is no sound being propagated. However, if the

environment is acted upon by another force, an acoustic signal, then the environment will

be disturbed from its quiescent state and a signal will be propagated through the medium.

This force can be considered mathematically as a driving function to the system.

The shape of the source partially determines the nature of the sound wave being

propagated. In the case of a point source, the sound wave propagated is spherical in

geometry since there is no apparatus to act as a focusing antenna, as the human mouth

does, but for the sake of simplicity, this thesis will deal with point sources that will radiate

spherically from the source location. This point source can be described as a time depen-

dent signal being propagated at a location ~x0, and so the use of the Dirac delta function

is appropriate in the use of a forcing function. A time-dependent signal propagated from

a location ~x0 therefore acts as a forcing function in the form

s (t) � (~x� ~x0) . (2.20)

2.2.6 The Modi�ed Wave Equation. Now that the di¤erent e¤ects of the envi-

ronment and the nature of the source have been discussed, it is possible to formulate a

di¤erential equation that combines these e¤ects. It has been mentioned that the e¤ect of

atmospheric attenuation must be included in the di¤erential operator, and so the left-hand

side of the di¤erential equation takes on the form

�p+ ~� � rp� 1

c2
ptt: (2.21)

The forcing function makes up the right-hand side of the equation, and so the di¤erential

equation is

�p+ ~� � rp� 1

c2
ptt = s (t) � (~x� ~x0) ; ~x 2 
; t > 0 (2.22)

The e¤ects on the signal at the boundary must satisfy the Robin boundary condition

@p

@n
= �p; ~x 2 @
; t > 0: (2.23)
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and must have initial conditions

p (~x; t) = 0; ~x 2 
; t = 0 (2.24)

pt (~x; t) = 0; ~x 2 
; t = 0:

These quiescent initial conditions are justi�ed by the fact that the microphones can be

calibrated such that the pre-existing pressure in the room is ignored, and so only the

changes in pressure are measured.

2.3 Inversion and Filtering

2.3.1 Localization Cues and Qualitative Elements of a Signal. When a signal is

acted upon by the environment, there are many changes that occur in the original signal,

all of which are described in the di¤erential operator and boundary conditions. These

e¤ects re�ect the nature of the propagational environment and are instrumental in the

location of the source�s origin. Humans have auditory receivers in the form of ears. The

size and shape of these ears help to directionalize the signal in that they are not open

all around, but have a bowl shape to them. The cartilage-composed outer part of the

ear is called pinna, and they help humans to determine where a signal is coming from�its

azimuth and elevation. Since this model assumes that the microphones being used are

omnidirectional, the azimuth and elevation of the source signal is not taken into account,

and so these e¤ects on the signal are not measured. Only the source and receiver locations

with respect to boundaries and the distance between source and receiver a¤ect the signal.

The nature of the environmental boundaries play a large role in the e¤ect of the

environment. If these boundaries are highly re�ective, the signal will not be attenuated

as much by the boundaries and so atmospheric attenuation will play a larger role. Since

atmospheric attenuation generally has a much smaller e¤ect than boundary attenuation,

the received signal typically has fewer echoes, but if the walls are highly re�ective, echoes

will be more prominent, making localization more di¢ cult (9).
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2.3.2 Source Localization. One of the main assumptions made in this thesis

is that the receiver and source locations are known. In the boardroom example, this

assumption is usually valid, but in the intelligence gathering example, the source locations

will be harder to determine. The process of determining source positions is called source

localization.

There are two types of source localization�active localization and passive localization.

Active localization introduces some form of energy into the system to gather information.

A familiar form of active localization is found in remote sensing�the radar. The radar is the

electromagnetic counterpart to sonar, which uses ultrasonic pulses that feed information

about the environment back to a receiver. Ultrasonic imaging is widely used during

pregnancies to observe a fetus during gestation. It can also be used in the gaseous

environment of the atmosphere, but since the atmosphere is much more tenuous than the

human body, it can be harder to focus the image (2).

An inherent problem in active sensing is the possibility of detection. Since an active

sensing method introduces excess energy into a system, this excess energy, in whatever

form it may be, may be detected, and so a more passive method of determining source

localization is desired.

If there are two microphones in a room, a signal will take di¤erent lengths of time

to propagate to microphones at di¤erent distances from the source. This duration is

called the time di¤erence of arrival (TDOA), and it can be exploited to determine source

locations. The set of possible locations of a source is a hyperbola with its receiver as

the focus. Using the TDOA method, the intersections of these hyperbolae can be found,

which will give the location of the source. Since this method uses the recording as the

means of determining source locations, there is no further preparatory e¤ort needed. If

the receiver is not detected, then neither is the process of source localization (5).

2.3.3 Time-Reversal. Once the source location has been determined, the informa-

tion needed to make the necessary transformation to remove the e¤ects of the environment

is complete. One method similar to the attempts being made in this thesis is called Time

Reversal. This is a method for removing the environmental e¤ects of the propagational
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medium in ultrasonic images, but the process is very similar to that of �ltering an acoustic

signal. When ultrasonic images are made, the environment changes the re�ected signals

making the images blurred. The objective is to remove the environmental e¤ects on the

image. When this process is put into the framework of information gathering, time re-

versal and RTF inversion are virtually equivalent. The information is acted upon by the

environment, giving a received signal to which a transformation is applied to retrieve the

original information. The time reversed focused image is simply the �ltered signal�only

the nature of the information is di¤erent (6).
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III. Mathematical Analysis

3.1 Introduction

In this chapter, the mathematics of acoustics lead to solutions for the three problems

posed in Chapter I. Initially, a general solution for an arbitrary domain will be explored

and then the spatial operator speci�ed to a rectangular domain. The second part of this

chapter deals with the dimensional analysis of the wave equation in an attempt to ascertain

exactly what physical quantity is being measured. Section four consists of restating of

the problem by Duhamel�s Principle so that the di¤erential equation can be solved more

readily by analytic methods. Sections �ve, six, and seven deal with Problems 1, 2, and

3, respectively. In each of these sections, it is shown how the three-dimensional modi�ed

wave equation is the key to solving the three problems, if applied properly.

3.2 The Eigenfunction Approach

Consider an arbitrary domain in which the sound wave will propagate. Associated

with this domain are the boundary conditions that de�ne the behavior of the wave at the

boundary of this domain. Let L be the linear di¤erential operator that will de�ne the

spatial shape of the wave modes. Then L is the spatial operator of the wave equation and

so the homogeneous wave equation in this domain (scaled with respect to the speed of the

wave, c) can be written as

LU = Utt: (3.1)

where U = U (~x; t) is the displacement of whatever measurement is being taken�in terms

of sound, this is usually pressure. Assuming that the operator L has no dependency on

t, such as time-dependent coe¢ cients, then U (~x; t) can be assumed to be separable such

that

U (~x; t) = u (~x)T (t) :

Even though Chapter II de�ned the forcing function driving the wave equation, it is omitted

here because of the application of Duhamel�s Principle in section four, which reformulates

the inhomogeneous initial boundary value problem with quiescent initial conditions into one
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that is homogeneous with nonquiescent initial conditions. By �nding the eigenfunctions

un of the spatial linear operator L, then the substitution

LUn = ��nUn = ��nun (~x)T (t) (3.2)

where �n is the eigenvalue associated with the eigenfunction un, eliminates the operator

in the wave equation, yielding

��nunT (t) = unT
00 (t) : (3.3)

The eigenvalues are all positive, and so therefore there is a nontrivial solution to this equa-

tion (7:389). Dividing both sides of the equation by un eliminates the spatial dependence

and yields only a time-dependent ordinary di¤erential equation

T 00 + k2nT = 0 (3.4)

k2n = �n ; (3.5)

which has the solution

Tn (t) = An sin (knt) +Bn cos (knt) : (3.6)

The solution to the wave equation in terms of the eigenfunctions of the spatial operator

L is therefore the superposition of the individual eigenfunctions multiplied by the time-

dependent solution:

Un (~x; t) = un (~x)Tn (t) = un (~x) [An sin (knt) +Bn cos (knt)] (3.7)

U (~x; t) =
X
n

Un (~x; t) : (3.8)

From this point, the problem becomes that of �nding the eigenfunctions of the spatial

operator L. The operator and the associated boundary conditions determine both the

shape the eigenfunctions take as well as the values which the eigenvalues �n can take on.
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The eigenfunctions describe the natural modes of vibration of the �uid and the eigenvalues

determine the frequencies at which these mode shapes vibrate (7:389).

Now consider a rectangular domain 
 such that


 = f~x = (x; y; z) : 0 < x < W; 0 < y < L; 0 < z < Hg : (3.9)

This domain is a speci�c case of the general domain discussed above, and so the eigenfunc-

tions for this domain can be found. For a rectangular domain, the spatial operator in the

wave equation is the Laplacian operator in three-dimensional Cartesian coordinates, so for

this speci�c domain, the homogeneous wave equation is

�U = Uxx + Uyy + Uzz = Utt : (3.10)

The following sections go through the process of using this eigenfunction approach by �rst

�nding the time component in the same way it was found above and then by �nding the

eigenfunctions of the Laplacian operator.

3.3 Dimensional Analysis

Dimensional analysis is the process of examining the dimensions of a physical quan-

tity to describe the units of measurement. In Chapter II, it was stated that the pressure

is simpler to measure than temperature and density and that is also provides more accu-

rate results. Furthermore, a microphone measures the change in pressure created by a

sound wave, so it seems logical to use this measurement in determining the e¤ects of the

environment on a signal.

Let [�] denote the dimension, or units, of the quantity �. Let u (~x; t) denote the

pressure measured at location ~x at time t and de�ne

[u (~x; t)] = P =
F

D2
=

KD

T 2D2
=

K

T 2D
(3.11)

where K is the unit for mass, T is the unit for time, and D is the unit for length.
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Since the di¤erential operator is a rate of change of a quantity with respect to another

quantity, the dimension of the derivative is the original dimension divided by the dimension

of the quantity the derivative is taken with respect to. In the case of the Laplacian

di¤erential operator, the derivative is taken with respect to spatial variables, and so

[�u (~x; t)] =
P

D2
=

K

T 2D3
: (3.12)

Similarly, the dimension of the quantity 1
c2
utt is

�
1

c2
utt (~x; t)

�
=

�
1

c2

�
[utt (~x; t)] =

�
T 2

D2

��
P

T 2

�
=

P

D2
=

K

T 2D3
. (3.13)

It is important to note that the terms �u and 1
c2
utt have the same dimension. Any two

physical quantities added or subtracted together must have the same dimension. Keeping

this in mind, it is easily seen that

h
~� � ru

i
=
h
~�
i
[ru] =

h
~�
i P
D
=
h
~�
i K

T 2D2

implies that h
~�
i
=
1

D
;

which is consistent with the fact that the atmospheric attenuation occurs as the wave travels

through space. As discussed earlier, atmospheric attenuation is very small compared with

practical boundary attenuation, and so examination of the dimensionless quantity W~�,

where W is the largest dimension of the domain, can lead to a justi�able approximation

of ~� = 0. In a room with absolute temperature 293 K with 30% relative humidity, the

atmospheric attenuation is only :025 decibels per one hundred meters. In a typical room,

this attenuation is negligible, and so the dampening term discussed in Chapter II will

be dropped from the wave equation, since the assumption is being made that the largest

dimension of the room is small compared to the speed of sound.
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3.4 Duhamel�s Principle

3.4.1 Impetus. When solving any di¤erential equation, ordinary or partial, it is

always easier to deal with a homogeneous problem than a driven one. As the problem

was stated earlier, the di¤erential equation driven by a forcing function with its associated

initial and boundary conditions is

Lu

u (~x; 0)

ut (~x; 0)

@u
@n

=

=

=

=

f

0

0

� (x)u

;

;

;

;

~x 2 
; t > 0

~x 2 
; t = 0

~x 2 
; t = 0

~x 2 @
; t > 0

; (3.14)

while what is sought is a di¤erential equation with associated initial and boundary condi-

tions in the form
Lu

u (~x; 0)

ut (~x; 0)

@u
@n

=

=

=

=

0

0

g

� (x)u

;

;

;

;

~x 2 
; t > 0

~x 2 
; t = 0

~x 2 
; t = 0

~x 2 @
; t > 0

: (3.15)

There is a theorem that accomplishes this goal, called Duhamel�s Principle (11:298).

This theorem allows for the reformulation of the original problem into a homogeneous one.

This homogeneous problem has the same linear di¤erential operator, but without quiescent

initial conditions.

3.4.2 Restatement of Problem. If u (~x; t) satis�es the original di¤erential equa-

tion, then v (~x; t; �) satis�es the initial boundary value problem

�v � 1
c2
vtt

v (~x; t; �)

vt (~x; t; �)

@v
@n

=

=

=

=

0;

0;

�s (�) � (~x� ~x0) ;

�v;

~x 2 
; t > �

~x 2 
; t = �

~x 2 
; t = �

~x 2 @
; t > �

(3.16)

where

u (~x; t) =

Z t

0
v (~x; t; �) d� : (3.17)
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Since this equation is homogeneous in a rectangular domain, we can use the method of

separation of variables to solve for v (~x; t; �), which will yield the solution in terms of

u (~x; t).

3.5 Deriving and Inverting the RTF

3.5.1 Separation of Variables. The geometry of a domain and its associated

boundary is probably the largest driving factor in determining the form that the solution

of a di¤erential equation will take. Using a rectangular domain for the wave equation

results in a solution in the form of in�nite series of trigonometric functions, while solving

the same equation in a circular domain introduces Bessel functions into the solution. It

is fortuitous that most rooms are roughly rectangular, since this allows the use of this

method to solve the equation.

The method of separation of variables is a valid method of solving a partial di¤er-

ential equation in rectangular domains. A rectangular domain is a domain in which the

boundaries with respect to all variables are not dependent on any other variables. For

example, in Cartesian coordinates, a circular domain is invalid for using separation of vari-

ables to derive a solution since the boundary is of the form y = �
p
a2 � x2. However,

performing a coordinate transformation into polar coordinates will result in a rectangular

domain in terms of the radius and angle, upon which a separation of variables method can

be used. Since the domain in question is already rectangular, the equation is ready to be

solved. Begin by assuming that v (~x; t; �) = Q (x; y; z)T (t; �).

3.5.1.1 The Time Component. Assuming that v takes the form given above,

it is easily seen that vtt = Q (x; y; z) �T (t; �), and so the equation becomes

�Q

Q (x; y; z)
=

�T

c2T (t; �)
= a1 (3.18)

where a1 is some real constant. Focusing only on the second and last parts of this equation

leads to the ordinary di¤erential equation

�T � a1c2T = 0 (3.19)
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which can take on three forms, each based on the value of a1. These three cases are

described next.

Case 1: a1 = �21 > 0. In this case, the solution is the linear combi-

nation of hyperbolic functions

T (t; �) = A sinh (�1ct) +B cosh (�1ct) : (3.20)

If A+B is nonzero, then as t approaches in�nity this function is unbounded, and so would

violate the law of conservation of energy for the system, since the original signal has �nite

energy. Case 1 therefore does not yield a nontrivial solution.

Case 2: a1 = �21 = 0. In this case, the solution is

T (t; �) = At+B : (3.21)

By applying the �rst initial condition,

v (~x; � ; �) = Q (~x)T (� ; �) = 0

and assuming that Q (x) is nonzero, then

T (� ; �) = A� �B = 0

B = A�

T (t; �) = A (t� �) :

And by applying the second initial condition,

vt (~x; � ; �) = �s (�) � (~x� ~x0)

the implication

s (�) _ A�;
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comes up, and since A is assumed to be a constant, this implies that the signal is linear,

and so violates the �nite-energy law as well. Therefore, Case 2 also leads to only a trivial

solution.

Case 3: a1 = ��21 < 0. In the case of the last possibility, the solution

is of the form

T (t; �) = A sin (�1ct) +B cos (�1ct) : (3.22)

Applying the �rst initial condition and assuming that Q (~x) 6= 0 for all ~x yields

v (~x; t; �) = Q (~x)T (� ; �) = 0 (3.23)

T (� ; �) = A sin (�1c�) +B cos (�1c�) = 0 (3.24)

B = �A tan (�1c�) (3.25)

T (t; �) = A (sin (�1ct)� tan (�1c�) cos (�1c�)) (3.26)

T (t; �) = C sin (�1c (t� �)) (3.27)

where C = A cos (�1c�). Since this is a constant, this is allowed. Because the second

initial condition is not quiescent, it must be applied after the eigenfunctions have been

found. As this is a �nite function and is not identically equal to zero, then the case is

valid, and so

T (t; �) = A sin (�1c (t� �)) (3.28)

3.5.1.2 The Z Component. Now, let Q (x; y; z) = P (x; y)Z (z). Then

Pxx + Pyy
P (x; y)

= �Z
00

Z
� �21 = a2 (3.29)

where a2 is some real constant. Examining the Z component �rst yields the ordinary

di¤erential equation

Z 00 +
�
�21 + a2

�
Z = 0 (3.30)

which has characteristic values

�
q
��21 � a2 : (3.31)
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Again, there are three cases which will describe what value a2 takes.

Case 1: a2 < ��21. Let �
q
��21 � a2 = �q2. In this case, the

quantity under the radical sign is positive, and so

Z (z) = Aeqz +Beqz : (3.32)

On the �oor, at z = 0, the Robin boundary condition is

�Z 0 (0) = �zZ (0) (3.33)

0 = Z 0 (0) + �zZ (0) (3.34)

0 = Aq +Bq + �zA+ �zB (3.35)

B = �A : (3.36)

On the ceiling, at z = H, the boundary condition is

Z 0 (H) = �zZ (H) (3.37)

0 = Z 0 (H)� �zZ (H) (3.38)

0 = AqeqH +BqeqH � �z
�
AeqH +BeqH

�
(3.39)

0 = A (q � �z) +B (q � �z) (3.40)

which leads to a trivial solution since A = �B. Since this solution would lead to the

entire function v (~x; t; �) being identically zero, this case is invalid.

Case 2: a2 = ��21. In this case the characteristic root is simply, in

which case the solution takes the form

Z (z) = Az +B ; (3.41)

and so

Z 0 (z) = A (3.42)
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The boundary conditions leads to the following two equations:

Z 0 (0) + �zZ (0) = 0 (3.43)

Z 0 (H)� �zZ (H) = 0 (3.44)

but it is clear that this case is trivial as well, and so case 2 is also invalid.

Case 3: a2 > ��21. In this case, the equation has the characteristic

values

�i
q
a2 + �

2
1 ; (3.45)

the solution takes the form

Z (z) = A sin (qz) +B cos (qz) (3.46)

where q =
q
a2 + �

2
1. Using the boundary conditions, the coe¢ cients can be solved for:

Z 0 (0) + �zZ (0) = 0 = Aq +B�z (3.47)

B = �A q

�z
Z 0 (H)� �zZ (H) = 0 = A (q cos (qH)� �z sin (qH))�B (q sin (qH) + �z cos (qH))

0 = A sin (qH)

�
��z +

q2

�z

�
+A

q2

�z
sin (qH) +Aq cos (qH) (3.48)

tan (qH) =
2q�z
q2 � �2z

(3.49)

So the eigenvalues associated with the Z-component of the equation, call them q = �l, are

the intersections of the curves tan (qH) and 2q�z
q2��2z

, and so

a2 = �21 � �2l : (3.50)
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The eigenvalue-eigenfunction solution for the Z component is therefore

Z (z) = Al

�
sin (�lz)�

�l
�z
cos (�lz)

�
; l = 1; 2; 3; :::

3.5.1.3 The Y Component. One the left-hand side of the equation remains

the expression
Pxx + Pyy
P (x; y)

= ��2l : (3.51)

Letting P (x; y) = X (x)Y (y) results in the elimination of the last partial di¤erential

operators and leaves only the ordinary di¤erential equations

X 00

X (x)
= � Y 00

Y (y)
� �2l = a3 (3.52)

where a3 is some real constant. Looking at the Y (y) portion of this equation leads to the

ordinary di¤erential equation

Y 00 +
�
a3 + �

2
l

�
Y = 0 : (3.53)

Since the basic ordinary linear di¤erential operator is acting upon Y as is being acted upon

Z, the same arguments for the value of the constant
�
a3 + �

2
l

�
are made as in the previous

section. So by using the same methodology used for the Z component, the Y component

solution is

Ym (y) = Bm

�
sin (�my)�

�m
�y
cos (�my)

�
; m = 1; 2; 3; ::: (3.54)

where �m are the intersections of the curves tan (qL) and
2q�y
q2��2y

, and

q = �m =
p
a3 + �l : (3.55)

3.5.1.4 The X Component. The �nal component of the equation is the X

component. It is of the form

X 00 � a3X = 0 (3.56)
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Since �23 is a positive number, the equation has characteristic roots

�ipa3 (3.57)

with the associated solution

Xn (x) = Cn

�
sin (�nx)�

�n
�x
cos (�nx)

�
; n = 1; 2; 3; ::: (3.58)

where �n = �
p
a3. Using all of the relationships between the �i�s, the expression

�21 = �2l;m;n = �2l + �
2
m + �

2
n : (3.59)

3.5.1.5 Joining the Components. Now that the four components of the

solution have been found, they are multiplied together to solve for vl;m;n (~x; t; �), after

which the principle of superposition is used to �nd v (~x; t; �). These four components are

Tl;m;n (t; �) = Al;m;n sin (�l;m;nc (t� �)) (3.60)

Xn (x) = Cn

�
sin (�nx)�

�n
�x
cos (�nx)

�
(3.61)

Ym (y) = Dm

�
sin (�my)�

�m
�y
cos (�my)

�
(3.62)

Zl (z) = El

�
sin (�lz)�

�l
�z
cos (�lz)

�
(3.63)

l;m; n = 1; 2; 3; :::

Let � 2 fx; y; zg, D 2 fW;L;Hg, and � 2 fl;m; ng. Then the spatial components

of the solution, the eigenfunctions with their associated eigenvalues for each component,

can be generalized by the function

F� (�;D) =

�
sin (���)�

��
��
cos (���)

�
: (3.64)
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Factoring out the constants and multiplying the generalized functions together with the

time component, the general solution is

vl;m;n (~x; t; �) = Kl;m;nFl (z;H)Fm (y;L)Fn (x;W ) sin (�l;m;nc (t� �)) ; t > �(3.65)

v (~x; t; �) =
X
l;m;n

Kl;m;nFl (z;H)Fm (y;L)Fn (x;W ) sin (�l;m;nc (t� �)) t > �;(3.66)

where Kl;m;n = Al;m;nElDmCn.

3.5.2 Determining Coe¢ cients. Now the second initial condition must be applied

to the solution to determine the values of the coe¢ cients Kl;m;n. Recall that the second

initial condition is

vt (~x; t; �) = �s (�) � (~x� ~x0) (3.67)

and since there is only one term in v (~x; t; �) which is a function of t, the derivative is easy

to compute:

vt (~x; t; �) =
X
l;m;n

Kl;m;nFl (z;H)Fm (y;L)Fn (x;W )�l;m;nc cos (�l;m;nc (t� �))(3.68)

vt (~x; � ; �) =
X
l;m;n

Kl;m;nF (z;H)Fm (y;L)Fn (x;W )�l;m;nc = �s (�) � (~x� ~x0) :(3.69)

Now, by taking the weighted inner product over the domain, the coe¢ cients Kl;m;n

can be solved for algebraically. Since these functions are all linearly independent, then

the inner product has no weighting function by the Sturm-Liouville Theorem (7). Then

the left-hand side of the inner product equation is*X
l;m;n

Kl;m;nFl (z;H)Fm (y;L)Fn (x;W )�l;m;nc ; Fl0 (z;H)Fm0 (y;L)Fn0 (x;W )

+
(3.70)

where hu; vi =
R

 u (~x) v (~x) d~x. Now, by taking the inner product over the domain, the

inner product is
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Z D

0
F� (�;D)F�0 (�;D) d�; (3.71)

the value of which, since the eigenvalues are the intersections of two curves, depend on the

value of � and �0. The important thing is that the eigenfunctions are orthogonal, and so

for � 6= �0, the value of the inner product is equal to zero, and so the triple sum on the

left-hand side collapses to one single term

c�l0;m0;n0Kl0;m0;n0f
�
z; l0;H

�
f
�
y;m0; L

�
f
�
x; n0;W

�
(3.72)

f (�; �;D) =

Z D

0
F� (�;D)F�0 (�;D) d� : (3.73)

Now, the right-hand side of the inner product equation is

h�s (�) � (~x� ~x0) ; Fl0 (z;H)Fm0 (y;L)Fn0 (x;W )i (3.74)

and since the Dirac delta function acts as an evaluation when it is in the integrand, the

right-hand side simpli�es to

�s (�) l0;m0;n0 (~x0) ; (3.75)

where

 l;m;n (~x) = Fl (z;H)Fm (y;L)Fn (x;W ) (3.76)

and de�ning fl;m;n as

fl;m;n= f (x; n;W ) f (y;m;L) f (z; l;H) (3.77)

the equation of inner products is now

c�l0;m0;n0Kl0;m0;n0fl0;m0;n0 = �s (�) l0;m0;n0 (~x0) ; (3.78)

and so,

Kl;m;n =
�s (�) l;m;n (~x0)
c�l;m;nfl;m;n

: (3.79)
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3.5.3 The Solution.

3.5.3.1 The Time Domain. Now that the initial conditions have been

utilized to solve for the undetermined coe¢ cients, the solution for v (~x; t; �) is

v (~x; t; �) =
X
l;m;n

 l;m;n (~x) l;m;n (~x0) [�s (�) sin (�l;m;nc (t� �))]
c�l;m;nfl;m;n

; (3.80)

and so, by Duhamel�s Principle, the time domain solution is

u (~x; t) =
X
l;m;n

 l;m;n (~x) l;m;n (~x0)
R t
0 �s (�) sin (�l;m;nc (t� �)) d�

c�l;m;nfl;m;n
: (3.81)

3.5.3.2 The Laplace Transform. Now, the orginal signal s (t) can be com-

puted, and since it is contained within an integral, a transformation must be applied to

eliminate this integral. The usual transformation of choice is the Fourier transform, but

Fourier transforms deal with doubly in�nite convolutions (the limits of integration are

positive and negative in�nity), whereas this integral has �nite limits of integration. The

Laplace transform can eliminate this integral most appropriately (10:31), and so taking

the Laplace transform of both sides with respect to the time variable yields

L
�Z t

0
�s (�) sin (�l;m;nc (t� �)) d�

�
= �Lfs (t)gL fsin (�l;m;nc (t))g (3.82)

Lff (t)g =

Z 1

0
e��tf (t) dt (3.83)

and so the Laplace transform of a �nite convolution is the product of the Laplace transforms

of the elements of the convolution. Coupled with the fact that Lfsin (�t)g = �
�2+�2

this

result yields

û (~x; �) = �ŝ (�)
X
l;m;n

 l;m;n (~x) l;m;n (~x0)

fl;m;n
�
�2 + �2l;m;n

� (3.84)

û (~x; �) = Lfu (~x; t)g (3.85)

ŝ (�) = Lfs (t)g : (3.86)
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3.5.4 The Inversion.

3.5.4.1 The Laplace Transform. The Laplace transform of the original

signal, ŝ (�) can now be solved for algebraically. This simple operation results in the

Laplace domain solution of Problem 1:

ŝ (�) =
�û (~x; �)P

l;m;n
 l;m;n(~x) l;m;n(~x0)�l;m;n

fl;m;n(�2+�2l;m;n)

: (3.87)

3.5.4.2 Back To the Time Domain. Now, by taking the inverse Laplace

transform of both sides, the time-dependent and source location independent solution to

Problem 1 is

s (t) = L�1

8><>: �û (~xr; �)P
l;m;n

 l;m;n(~xr) l;m;n(~x0)

fl;m;n(�2+�2l;m;n)

9>=>; (3.88)

where ~xr is the receiver location. Now, this Laplace transform will most likely need to be

solved numerically since it is the Laplace transform of a term with a triple in�nite sum in

the denominator, but once completed, the solution to Problem 1 is complete.

3.6 Filtering Multiple Sources

3.6.1 Introduction. In this next section Problem 2, the problem of �ltering

multiple signals, is explored. The goal of this section is to generalize Problem 1 to �lter

extraneous signals from a recording. In this section, all computations are made in the

Laplace transformed time domain, and so all results will be stated in terms of the time-

dependent signal�s Laplace transform, unless the speci�ed equation explicitly contains the

variable t. In this section, ~xr;i denotes the location of the ith receiver while ~xs;i denotes

the location of the ith source.

3.6.2 Restating the Problem. Since this problem concerns multiple signals, the

right-hand side of the modi�ed wave equation must re�ect this change. Whereas in
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Problem 1 the right-hand side is

s (t) � (~x� ~x0) ; (3.89)

the right-hand side of the wave equation in Problem 2 has a sum of signals at distinct

locations. The appropriate expression for n sources at location i, for i = 1; 2; :::; n is

nX
i=1

si (t) � (~x� ~xs;i) : (3.90)

If there are also multiple receivers, then this system consists of the convolution equations

u (~xr;j ; t)=
X
l;m;n

 l;m;n (~xr;j)
Pn

i=1  l;m;n (~xs;i)
R t
0 �si (�) sin (�l;m;nc (t� �)) d�

c�l;m;nfl;m;n
(3.91)

i = 1; 2; :::; n j = 1; 2; :::;m

and taking the Laplace transform of both sides results in the system of equations

û (~xr;j ; �) = �
X
l;m;n

 l;m;n (~xr;j)
Pn

i=1  l;m;n (~xs;i) ŝi (�)

fl;m;n
�
�2 + �2l;m;n

� (3.92)

û (~xr;j ; �) = Lfu (~xr;j ; t)g : (3.93)

In a more compact form, the system can be written as

ûj (�) = �
nX
i=1

ŝi (�)H (~xr;j ; ~xs;i; �) (3.94)

H (~xr;j ; ~xs;i; �) = Hij = �
X
l;m;n

 l;m;n (~xr;j) l;m;n (~xs;i)

fl;m;n
�
�2 + �2l;m;n

� (3.95)

ûj (�) = û (~xr;j ; �) : (3.96)

3.6.3 A General Solution. Since this system is linear with two separate indices,

it can be written as a matrix equation, where m is the number of receivers and n is the
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number of sources. The m� n matrix of transfer functions is

H =

26666664
H11 H12 � � � H1n

H21 H22 � � � H2n
...

...
. . .

...

Hm1 Hm2 � � � Hmn

37777775 (3.97)

and the system of linear equations is the matrix equation

Hŝ = û (3.98)

where

ŝ =

26666664
ŝ1 (�)

ŝ2 (�)
...

ŝn (�)

37777775 (3.99)

û =

26666664
û1 (�)

û2 (�)
...

ûm (�)

37777775 : (3.100)

This matrix equation can be solved to �nd the vector ŝ. As is the case with all linear

equations, certain conditions upon H must be satis�ed in order for there to be a solution,

if any. H must be invertible, which is discussed in a later section, to obtain a unique

solution. If there is not a unique solution, as in the case where the number of sources

outnumbers the number of receivers, then a solution of minimum norm can be found, and

if there are more receivers than signals, a least-squares solution can be computed.

3.6.4 A Speci�c Case�2 Receivers, 2 Sources. To apply this problem to a real-

world problem, consider the case of two sources and two receivers. By placing no limita-

tions on the location of the receivers or sources, this example con�rms that a single signal
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can be found by the received signal when the other signal is considered to be ŝi (�) = 0.

Since this is a linear problem, the system of equations reverts to the original problem, but

with linearly dependent equations. If the source and receiver locations are constrained

such that no two sources or receivers are collocated, then the matrix equation can be

used to solve for the individual original signals. The assumptions from Problem 1 are still

needed, i.e. the sources are point sources not located on the boundary and the microphones

are omnidirectional. The system of equations for this problem is

24 H11 H12

H21 H22

3524 ŝ1 (�)

ŝ2 (�)

35 =
24 û1 (�)

û2 (�)

35 : (3.101)

Note that the spatial dependencies of ŝi (�) and ûj (�) are contained in the subscripts.

Now, before a solution to this problem can be found, the nature of the matrix H must be

determined, as it determines the existence of a solution.

3.6.5 Limitations. When dealing with the solvability of a matrix equation, there

are three possibilities. The �rst is that there exist an in�nite number of solutions. In

this case, the number of sources outnumbers the number of receivers and so the system is

underdetermined. When this is the case, a solution which has minimum norm must be

sought, most easily by using the Moore-Penrose pseudoinverse of the form where m < n

(4:114). The second possibility is that there exists no solution to the equation. If this

is the case, then a least-squares solution can be attempted by using the Moore-Penrose

pseudoinverse for m > n. The �nal possibility is that there exists a unique solution to

the system of equations. In this case, the matrix H is invertible, and standard matrix

algebra can be used to solve for the unknown vector ŝ. H is invertible only if H is a square

matrix, and in the case of two receivers and two sources, this is true, but the existence of

a solution is guaranteed if and only if the determinant of the matrix is nonzero.

3.6.5.1 The Determinant. Given that the determinant of a 2� 2 matrix is������ a b

c d

������ = ad� bc ; (3.102)
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the determinant of the matrix H can be easily computed to be

det (H) =

������ H11 H12

H21 H22

������ = H11H22 �H12H21 : (3.103)

Multiplying any arbitrary two transfer functions together yields the sum

HijHhk =
X
l;m;n

 l;m;n (~xr;j) l;m;n (~xs;i)

fl;m;n
�
�2 + �2l;m;n

� X
p;q;r

 p;q;r (~xr;k) p;q;r (~xs;h)

fp;q;r
�
�2 + �2p;q;r

� ; (3.104)

and with a bit of algebraic manipulation, the expression for the determinant can be sim-

pli�ed to

jHj=
X

l;m;n;pq;r

 l;m;n (~xs;1) p;q;r (~xs;2)
�
 l;m;n (~xr;1) p;q;r (~xr;2)�  l;m;n (~xr;2) p;q;r (~xr;1)

�
fl;m;nfp;q;r

�
�2 + �2l;m;n

� �
�2 + �2p;q;r

� :

(3.105)

Clearly, if

 l;m;n (~xr;1) p;q;r (~xr;2) =  l;m;n (~xr;2) p;q;r (~xr;1) (3.106)

then the determinant of the matrix is equal to zero. This will happen only if ~xr;1 = ~xr;2

which implies that if the receivers are located in the same position, then the matrix is not

invertible. This makes sense considering that if two microphones are collocated, they will

record the same signal. There would be no di¤erence between the transformed signals

û1 (�) and û2 (�), and so the matrix would have linearly dependent rows. Similarly, if the

sources are located at the same position, then the determinant would be

H (~xr;1; ~xs;i; �)H (~xr;2; ~xs;i; �)�H (~xr;2; ~xs;i; �)H (~xr;1; ~xs;i; �) = 0 : (3.107)

Since H (~xr;j ; ~xs;i; �) has no dependence upon the source signal (only its location),

two di¤erent signals propagated from the same location will be impossible to separate using

this method. Therefore, for the matrix H to be invertible, the only requirement is that

the two sources be located separately and the two receivers be located separately. If a

source and receiver were located together, then there is no problem. In fact, this would

make it very easy to �lter the two signals.
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3.6.5.2 The Condition Number. The determinant is not the only factor in

the solvability of a system of linear equations. There is also the condition number of the

matrix. The condition number is a measure of the stability of the matrix operator in terms

of solving a system of linear equations. If a matrix is nearly linearly dependent (meaning

that the determinant is close to zero), then the matrix will have a high condition number.

The condition number is not unique; it depends upon which norm is chosen to evaluate the

matrix under. Therefore, there are a number of di¤erent possibilities of norms that can

be used. When dealing with matrices, the Frobenius norm is a good norm to use since the

evaluation of the norm requires only the squaring and summing of the matrix components.

The Frobenius norm of a matrix is de�ned as

kAk2F =
X
i;j

a2ij : (3.108)

Once the norm is chosen, the condition number of the matrix A is de�ned as

�� (A) = kAk�
A�1

�
: (3.109)

where � is the choice of norm used in �nding the condition number. The expression can

be read as "The condition number � of the matrix A with respect to the norm � is equal

to the � norm of A times the � norm of A�1." As stated before, the Frobenius norm is

useful here because it requires minimal calculations and the inverse of a 2� 2 matrix has

a very simple formula. The Frobenius norm of the matrix H with two receivers and two

sources is given by

kHkF =
�
H2
11 +H

2
12 +H

2
21 +H

2
22

� 1
2 : (3.110)

and the norm of H�1, where

H�1 =
1

H11H22 �H21H12

24 H22 �H12
�H21 H11

35 ; (3.111)
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is given by

H�1
F
=

1

det (H)
�
H2
11 +H

2
12 +H

2
21 +H

2
22

� 1
2 =

1

det (H)
kHkF : (3.112)

So the condition number of the matrix H is

�F (H) =
kHk2F
det (H)

(3.113)

and it is clear that the condition number of the matrix is inversely related to the deter-

minant of the matrix of transfer functions. Simply put, if the receivers or sources are

located closely together, then the condition number will be large, and the matrix will be

ill-conditioned, yielding a potentially unstable result. There are ways around using a

matrix with a large condition number, such as using a singular value decomposition of the

matrix, or a QR decomposition, but these measures will not be discussed here.

3.6.5.3 The Solution. If H is invertible with a low condition number, then

the system of equations can be solved simply by inverting the matrix H. Multiplying both

sides of the equation by H�1 yields the solution

24 ŝ1 (�)

ŝ2 (�)

35 = H22û1(�)�H12û2(�)
det(H)

H11û2(�)�H21û1(�)
det(H)

: (3.114)

3.7 Filtering Sources of Variable Location

3.7.1 Restating the Problem. In Chapter I, Problem 3 was introduced as the

problem of �ltering the signal of a mobile source. In Problems 1 and 2, the sources

were assumed to have constant location during the recording, and so the position was

independent of time. In Problem 3, however, the position of the source is a function of

time, and so the problem is somewhat more complicated than the previous problems. The

partial di¤erential equation needed to solve this problem is very close to that of Problem

1, with one slight change:

�u� 1

c2
utt = s (t) � (~x� ~x0 (t)) ; (3.115)
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where ~x0 (t) is the location of the source at time t. Applying Duhamel�s Principle to this

problem yields the same homogeneous di¤erential equation, but with the initial condition

vt (~x; � ; �) = �s (�) � (~x� ~x0 (�)) : (3.116)

The analysis of the problem is very much the same as it was with Problem 1, but

when the weighted inner product is taken over the domain, the right-hand side of the inner

product equation is somewhat di¤erent:

h�s (�) � (~x� ~x0 (�)) ; Fl0 (z;H)Fm0 (y;L)Fn0 (x;W )i (3.117)

Whereas in Problem 1, only the time-dependent signal was a function of � , any term that

is dependent upon the source location ~x0 has a time-dependency. The right-hand side of

the inner product equation is

�s (�) l0;m0;n0 (~x0 (�)) : (3.118)

The complications do not manifest until the Laplace transform of the �nite convolu-

tion is taken. Since the source location is dependent upon time, it cannot be factored out

of the integral, and so the Laplace transform is more complicated. The convolution is

Z t

0
�s (�) l0;m0;n0 (~x0 (�)) sin (�l;m;nc (t� �)) d� : (3.119)

To simplify this convolution, de�ne

G (t) = �s (t) l0;m0;n0 (~x0 (t)) (3.120)

Then the integral becomes

Z t

0
G (�) sin (�l;m;nc (t� �)) d� ; (3.121)
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and by taking the Laplace transform, the expression is similar to that of Problems 1 and

2, but with Ĝ (�) instead of ŝ (�):

L
�Z t

0
G (�) sin (�l;m;nc (� � t)) d�

�
= Ĝ (�)Lfsin (�l;m;nct)g (3.122)

Ĝ (�) = LfG (t)g : (3.123)

Ĝ (�) can be expressed in the same way as ŝ (�) in the previous problems. So,

Ĝ (�) =
û (~x; �)P

l;m;n
 l;m;n(~x) l;m;n(~x0)

fl;m;n

�
�2+(�l;m;nc)

2
� ; (3.124)

but a solution for ŝ (�) is desired, so some analysis on Ĝ (�) must be performed. By

de�ning

M (t) =  l0;m0;n0 (~x0 (t)) ; (3.125)

then taking the Laplace transform of both sides of

G (t) = s (t)M (t) (3.126)

yields

Ĝ (�) = ŝ (�) � M̂ (�) =

Z 1

0
ŝ (�) M̂ (�� �) d� (3.127)

since the Laplace transform of a product of two functions is the convolution of their Laplace

transforms. By taking a second Laplace transform with respect to the transform variable

�, the convolution is converted to a multiplication of the two doubly transformed functions,

and s (t) can be solved for by taking the inverse Laplace transforms of both sides, �rst with

respect to �, and second with respect to �.

There is a simpler way to achieve an approximation of this result, however. Assuming

that the velocity of the source is small compared to the speed of sound, that is

����d~xdt
����� c; (3.128)
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then by sampling the source location over small time intervals and summing the signals

over the length of the recording, the problem can be converted to one similar to Problem

1, but with the signal computed on each interval and then summed. In essence, Problem

1 is applied to each interval. To achieve this goal, let

~x0 (ti) = ~bi; ti�1 � t � ti; i = 1; 2; :::; N (3.129)

where t0 = 0 and tN = T , the total length of time of the recording. Then, for ti�1 � t � ti,

ui (~x; t) =
X
l;m;n

 l;m;n (~x) l;m;n

�
~bi

� R t
0 �si (�) sin (�l;m;n (t� �)) d�

c�l;m;nfl;m;n
(3.130)

u (~x; t) =

NX
i=1

ui (~x; t) (3.131)

Thus, applying the results of Problem 1 to each interval of the recording yields the original

signal for that interval, and so the total signal is simply the sum of the signal over each

interval:

s (t) =

NX
i=1

si (t) (3.132)

For these de�nitions of u (~x; t) and s (t) to make sense, then outside of the interval

[ti�1; ti], then ui (~x; t) and si (t) must be identically equal to zero. Continuity of the

functions and their derivatives at the endpoints of the integral must also be considered so

that the signal is smooth after being �ltered. While the number of calculations required to

perform this is N times the number of calculations required to �lter a source with constant

location, it is more applicable to the requirements of �ltering the signals from a room of

people. E¢ ciency must be considered when deciding how many points to sample, as well

as the di¢ culty in determining the source location at any given time.

3.8 Conclusion

3.8.1 Results. In Problem 1, it is shown that the linear di¤erential operator

acting on a function u (~x; t) with a driving term s (t) � (~x� ~x0) is invertible, and the original

signal can be found after it has been acted on by the environment in which it propagates,
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as long as the geometry of the domain is su¢ ciently simple. In this case, the solution

was found for a rectangular room, but it was shown in Section 2 that the problem can

be generalized easily, where the only di¤erence in the procedure is that of �nding the

eigenfunctions. Rectangular domains are especially good for solving analytically due to

the fact that the Laplacian operator for this coordinate system is separable in the spatial

domains. Because of this, the eigenfunctions were relatively easy to �nd. However, with

di¤erent domains, the eigenvalues and eigenfunctions can be harder to compute, such as

the case with a cylindrical domain. The Laplacian operator in a cylindrical Cartesian

domain is not separable, except in the z-direction. However, after applying a coordinate

transformation from Cartesian coordinates to polar coordinates, the operator is separable

with the di¤erence being that the coe¢ cients are no longer constant. Because of this

di¤erence, functions containing Bessel functions emerge as eigenfunctions. Furthermore,

in some irregular domains, a closed-form solution for the eigenfunctions may not even be

possible, and so a numerical method such as a �nite element method would be required to

�nd the eigenfunctions. So, it is easy to see how a change in the domain geometry leads

to di¤erent mode shapes for the room transfer function.

In Problem 2, the circumstances under which two signals can be �ltered were ex-

plored, and the results were applied to the case of two receivers and two sources. While

this is the simplest case conceivable, it is not very practical. It is easy to generalize the

solution under two sources and receivers to a larger problem simply by expanding the

dimensions of the matrix H, but this leads to more computationally intensive equations.

The circumstances under which the H matrix is ill-conditioned were also discussed, as well

as the e¤ects on the solution when H is ill-conditioned, leading to a potentially unstable

result. This instability can be avoided by using singular value decompositions or QR

decompositions.

In Problem 3, a source with variable location was discussed. The di¢ culty in solving

this equation comes about from the extra terms left in the convolution integral, and the

method of applying a second Laplace transform was o¤ered as a means of extracting the

original signal. A sampling method was then devised that yields an approximation of

the total signal by sampling the source location during a time interval and summing the
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solutions on these intervals together, while assuming that the velocity of the source is

small with respect to the speed of sound. While more costly in execution than Problem

1, it is far more practical than considering a human source stationary during the time of

recording.

3.8.2 Practicality. As discussed before, the largest obstacle to overcome in solving

Problem 1 for a particular domain is the geometry of the room. A di¤erent domain could

produce vastly di¤erent results. The possibility of not knowing the parameters of the

room must also be considered, such as the coe¢ cients of re�ection and whether or not the

boundaries transmit sound outside of the domain.

The question of real-time �ltering is important since the importance of the informa-

tion being �ltered could be very high. In the case of intelligence gathering, decisions may

be based on the information contained in the recordings, and so it is necessary that this

information be found as quickly as possible, so real-time �ltering is somewhat important

here. In the case of using a �lter to eliminate noise heard in a phone call from a loud

room, real-time �ltering is a necessity for the product to be marketable to the public.

However, in the case of recording boardroom meetings, the need for real-time �ltering is

nonexistent, since the �ltered signals would be stored for future use anyway. There is no

inherent problem in the mathematics of the idea of real-time �ltering using this method,

since the expression for u (~x; t) is not dependent upon the total duration of the recording,

T . Therefore, a computer program could �lter each second recorded in a period of time

dependent only upon the number of signals and number of receivers, and of course the

speed at which it can perform calculations. The implementation of such a program is

developed and discussed in Chapter IV.

The �nal limitation on the practicality of this method is that of being able to de-

termine source locations. It is entirely possible to determine source locations using an

echolocation procedure much the same as bats use ultrasonic sonar to determine the loca-

tion of their prey (source here). Whether or not this active form of source localization or a

passive form using the di¤erence in times at which the receivers actually receive the signal

depends on the circumstances under which the recording is being made. If it is covert or
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would interfere with the conversation being recorded, then a passive form of source local-

ization must be used. If it is a meeting that everyone knows is being recorded or where

there is no way that they could know about the active localization, then an active form of

source localization can be used.
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IV. Application Analysis

4.1 Introduction

This chapter attempts to determine the net e¤ect of the environment on a signal

in a computational approach using the results of Chapter III. The lack of experimental

data severely hinders the full extent of the application of these results, but the procedure

can be applied to known signals to determine how well the assumptions made in solving

Problems 1 and 2 �t with the real-world e¤ects of an environment on acoustic signals.

Of the e¤ects measured computationally, the net change in signal content in the Laplace

transform domain will be measured on single-frequency tones. Without more powerful

computing tools, the full analytic value of these approximations is diminished, but it serves

to show the number of calculations required to �lter the signal accurately. For example,

the loop in the program that determines the components of the matrix H can require

millions upon millions of cycles, depending on how accurate the results are needed to

be. In the computations performed in this chapter, the loop that found these components

cycles approximately two million times to achieve a numerical approximation of the transfer

function.

The program used to implement the solutions found in Chapter III is MATLAB,

version 7.0.1. The original signal is input symbolically and then quanti�ed numerically

to aid in computation speed. The original program used the symbolic algebra toolbox for

MATLAB almost exclusively, but the computing power needed to perform this symbolically

is very high, and the times for computing the transfer functions alone in this manner took

more than 15 minutes per calculation. Since this method was so ine¢ cient, it was dismissed

as a possibility for �nding the transfer functions. The numerical approach greatly reduces

the computational time needed, but still takes approximately 6 minutes to implement for

a simple single-frequency tone and so would be very ine¢ cient for computing the transfer

function for a highly intricate pattern of a typical human voice speaking for an extended

period of time. The actual MATLAB code used in determining these transfer functions

is in Appendix A.

4-1



Because the computational power needed for computing a single transfer function is

so high, the computation of multiple transfer functions is avoided, but is discussed in the

Section 3 of this chapter. The MATLAB code to implement the two receiver/two source

case is also contained in Appendix A. Suggestions for how to implement this code more

e¢ ciently are contained in Chapter V.

Finally, in all calculations, the atmospheric attenuation was ignored since the room is

assumed to be su¢ ciently small to ignore the 0.025 dB
100 m attenuation due to atmospheric

friction. This eliminated some unnecessary complications in the writing of the code. To

eliminate further complications in the code, the eigenvalues were approximated by ��
D for

� = 1; 2; 3; ::::. It was shown in Chapter III that the eigenvalues were the intersection of a

rational function and a tangent function, but for low � and low index, this approximation

is fairly valid.

4.2 Single Frequency Tones

The human auditory range in young adults is 20 Hz to 20 kHz. This section uses the

MATLAB code for one source and one receiver to determine the e¤ect of an environment

on a single-frequency tone. The parameters for the environment that were used are

W = 10 m

L = 10 m

H = 3 m

~xr = (2 m; 2 m; 2 m)

~xs = (9 m; 9 m; 1:5 m)

�x = 10

�y = 10

�z = 10 :

The room is modeled after a typical medium-sized room with su¢ ciently small coe¢ cients

of re�ection to avoid extraneous signal re�ection in order to aid in computation.
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4.2.1 Low Frequency Range�20 Hz. In the very lowest range of human auditory

perception, the change in the Laplace transform of the signal is greatest. The two changes

were computed at two distinct source locations�one at a moderate distance from the re-

ceiver and the other very close to the receiver. The lack of accuracy in these computations

is intuitively seen in the fact that the change in the Laplace transform of the original and

received signals is identical. This change in the signal is computed by approximating the

integral

I =

Z 20000

�20000
(ŝ (�)� û (�))2 d� =

Z 20000

�20000
ŝ (�) (1�H (�))2 d� (4.1)

with the rectangular rule of Riemann integration. The width of each rectangle is 10, and

so the total number of terms in the Riemann sum is 4001.

4.2.1.1 Source Location 1. Using the source location given above, which

places the source at a large distance from the receiver with respect to the size of the room,

the original signal was assumed to be

s (t) = sin (2� (20) t)

which oscillates fairly rapidly�20 cycles per second. The Laplace transform of this signal

is shown in Figure 4.1.

The transfer function is determined solely by the environment in which the signal

propagates, and so if the parameters of the room remain constant when two di¤erent signals

are being propagated from the same location, then the two signals are acted upon by the

same transfer function. Since we are simply looking at the transformed transfer function

along the real line, and since there are poles along the imaginary axis of the transform

domain, there is a peak in the value of the transfer function close to � = 0. The transfer

function for the room described above is shown in Figure 4.2. The scale on Figures 4.1 and

4.2 are very di¤erent, but when scaled, both are very nearly zero except when close to the

origin. The received signal can be found simply by multiplying the transformed signal and

the transformed transfer function together. The received signal in the transform domain

is shown in Figure 4.3.
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Figure 4.1 Laplace Transform, 20 Hz.

Source Location 2. The second source location is

~xs = (:1 m; 9 m; 2:9 m)

Since the signal is the same, only the transfer function changes with respect to the transform

variable � from the previous source location. The transfer function for this source location

is shown in Figure 4.4.

4.2.1.2 Middle Frequency Range�2 kHz. The middle range of human au-

ditory perception is around 2 kHz, which oscillates much more rapidly than the 20 Hz

signal, and so to model it accurately in the time domain requires the use of approximately

100 times more sample points than with the 20 Hz signal. Therefore, it is more useful to

perform these calculations completely in the Laplace transform domain.

Source Location 1. In this section, the original signal is assumed to

be

s (t) = sin (2� (2000) t) (4.2)
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Figure 4.2 Transfer Function, Laplace Domain

which has a Laplace transform of

ŝ (�) =
4000�

�2 + (4000�)2
: (4.3)

the graph of which is contained in Figure 4.6.

Whereas the 20 Hz signal dropped o¤ closer to zero, this signal drops o¤ much

farther from the origin. Furthermore, the maximum value of the transform is on the order

of hundredths whereas the maximum value of the 20 Hz signal transform was on the order

of 1. The transformed received signal is given in Figure 4.7.

Source Location 2. In this location, the received signal from the

original 2 kHz signal is much the same as that for source location 1, since the transfer

functions are not so di¤erent for these two source locations.

4.2.1.3 High Frequency Range�20 kHz. At the upper frequency range of

human auditory perception, the transformed signal looks much the same as that of the 2

kHz signal, but with more curvature. As with the 2 kHz signal, the number of sample

points for any time-domain computations is prohibitive, and so only the Laplace transform

domain will be dealt with. The Laplace transform of the 20 kHz signal is given in Figure
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Figure 4.3 Received 20 Hz Signal, Transform Domain.

4.8.By applying the transfer function to this transformed signal, the received signal is

attained, which is shown in Figure 4.9.

4.2.2 Multifrequency Signals. Di¤erent multifrequency signals can be considered

for implementation in the MATLAB program, but the received signals cannot be computed

accurately due to their complexity. There are two di¤erent types of multifrequency signals

that can be implemented easily by modifying the program, chirps and simultaneous tones

of di¤erent frequency.

4.2.2.1 Chirps. Chirps are signals that either increase or decrease in fre-

quency with time. The rate of increase or decrease a¤ects the transformed signal by its

Laplace transform. One example of an increasing tone that ascends in pitch quickly is

the time-signal s (t) = sin
�
2�t2

�
.MATLAB encounters di¢ culty in attempting to �nd a

closed-form solution for the Laplace transform of a chirp, and so it must be computed nu-

merically. The graph of the numerically computed Laplace transform is shown in Figure

4.10. It is apparent that there is a pole at the origin, and so when the transfer function is

applied to this transformed signal, the pole will be carried through to the received signal

by multiplication.
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Figure 4.4 Transfer Function, Laplace Domain, Source Location 2.

An example of a slowly ascending chirp is easy to �nd. Simply decrease the value of

the exponent in the rapidly ascending chirp, but without going to or below 1. By lowering

the exponent to only 1.5, the chirp ascends in pitch much more slowly, as shown in Figure

4.11.

Since the frequency increases much more slowly than s (t) = sin
�
2�t2

�
, even with

only a slight decrease in the exponent, MATLAB has much less di¢ culty in computing

the Laplace transform analytically, and with a program that computes the received signal

well, will yield a better result than with a rapid ascension chirp.

Descending chirps behave very similar in MATLAB to their corresponding ascending

chirps. By simply replacing the exponent of the time variable with its reciprocal, the

chirp will descend in pitch at the same rate that its counterpart ascends. A phase shift

must be introduced as well, to avoid a singularity in the derivative at t = 0. The rapidly

ascending chirp�s descending counterpart is s (t) = sin
�
2�
p
t+ 1

�
, which decreases much

more slowly than its counterpart increases. Note that the scale on the t-axis of Figure

4.13 is ten times that of Figure 4.11.
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Figure 4.5 Laplace Transform, 2 kHz Signal.

The counterpart to the slowly ascending chirp is the descending chirp

s (t) = sin

�
2�

3

q
(t+ 1)2

�
(4.4)

Note again that the descending chirp descends much more slowly in pitch than its counter-

part, as Figure 4.14 has a scale ten times that of Figure 4.10. Like the rapidly ascending

chirp, MATLAB encounters di¢ culty in performing the Laplace transform of this signal

because of its high initial frequencies.

4.2.2.2 Simultaneous Tones of Di¤erent Frequency. The touch-tone phone

system uses a signal consisting of two distinct tones overlapped for each button on a

telephone. One component of the signals for the buttons in a row all have the same tone

and one component of the signals for the buttons in a column share the same tone. This

is an example of a use for a ditonal frequency. A human voice is comprised of many

tones overlapping and being propagated simultaneously, so these signals are the closest

to human voices of those that have been analyzed. An example of a ditonal signal, i.e.

a signal comprised of two tones is s (t) = sin (2� (200t)) + sin (2� (400t)), whose graph is

displayed in Figure 4.15.The Laplace transform of this signal is much easier for MATLAB

to compute than that of chirps of any kind, since this is simply the sum of two single-tone
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Figure 4.6 Laplace Transform, 2 kHz Signal.

frequencies, and the Laplace transform is a linear transformation. In fact, given the value

of the amplitudes at given frequencies, a fair approximation of a human voice could be

made using this program. Once again, however, the �ltering of such a signal is impossible

with the program provided in Appendix A. The graphs of signals with multiple tones,

however, becomes much more complicated than that in Figure 4.15. For example, a signal

consisting of four frequencies, 200 Hz, 850 Hz, 1700 Hz, and 2500 Hz with amplitudes of 2,

5, 3, and 4, respectively (these numbers are chosen somewhat randomly, only constrained

to fall within the low to middle range of human auditory perception) has the signal

s (t) =

4X
i=1

Ai sin (2� (fit)) (4.5)

Ai = (2; 5; 3; 4) (4.6)

fi = (200; 850; 1700; 2500) (4.7)

which has a graph displayed in Figure 4.15. The complexity of the signal is very clear, and

this is only for four distinct tones. With the continuous range of tones contained in the

average human voice, the signal only gets much more complicated, making it very di¢ cult

to �lter in a computer program.
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Figure 4.7 Laplace Transform, 20 kHz.

Figure 4.8 Transformed Received Signal, 20 kHz.
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Figure 4.9 Rapid Ascension Chirp, Time Domain.

Figure 4.10 Laplace Transform, Rapid Ascension Chirp.
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Figure 4.11 Slow Ascension Chirp.
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Figure 4.12 Rapid Descension Chirp.
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Figure 4.13 Slowly Descending Chirp
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Figure 4.14 Ditonal Signal of 200 Hz and 400 Hz, Equal Amplitude.

4-13



10.750.50.250

10

5

0

-5

-10

x

y

x

y

Figure 4.15 Four-Tone Signal of Varying Amplitude.
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V. Conclusions and Recommendations

5.1 Summary

The initial problem of �nding and inverting a room�s acoustic transfer function begins

with �nding the rule by which acoustic signals propagate and then by �nding the rule

by which the propagation a¤ects the signal. Once this rule is found, the e¤ects of the

environment can be reversed, thereby yielding the original signal. When multiple receivers

and multiple sources are involved, the set of e¤ects on the signals is described by a system

of linear equations in a transformed domain, which can be expressed in terms of a matrix.

Under certain conditions, this matrix can be inverted, and a unique solution for the set

of signals can be found, but quite often these conditions are not met, resulting in a least-

squares or minimum norm solution. On top of these constraints is the fact that the

computations are made with the assumption that the sources are in a �xed, known location

throughout the duration of the recording. Once this assumption is false, the problem of

inverting even a single transfer function becomes much more di¢ cult, involving multiple

Laplace transforms.

With all of these conditions met, it is theoretically possible to �lter acoustic signals

exactly, but the implementation of this process in a program as advanced as MATLAB can

be prohibitive, even for simple signals such as single-frequency tones. When considering the

acoustic complexities of the human voice, the implementation could take a prohibitively

long period of time. The goal of a real-time �lter is one that would bene�t both the

Department of Defense and private industry. With real-time �ltering, information from a

bugged room could be processed immediately, yielding potentially life-saving information,

and conversations held over a mobile phone in a noisy room would not be as frustrating as

they usually are. Products such as the adaptive earpiece Jawbone take advantage of this

technology to �lter the noise from a loud room (1).

The raw computing power necessary to perform these tasks with any degree of an-

alytic computation is far higher than that available on a typical desktop computer, and

so a purely numerical solution would be much easier to compute, if less accurate than an

analytic solution. This involves being able to take Laplace transforms numerically as well
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as improving upon the accuracy of the numeric computations already implemented in the

code provided in Appendix A.

5.2 Conclusions

Based on the analysis of the modi�ed wave equation performed in Chapter III, it

is possible to �lter acoustic signals analytically, yielding a transfer function that can be

applied to the Laplace transform of any signal. With this altered signal, the original

signal�s Laplace transform can be found, which can, in turn be inverted to yield the exact

original signal.

By generalizing the number of signals and receivers in a room, the problem of �ltering

acoustic signals can also be solved exactly, given that certain conditions are met. These

conditions relate directly to the determinant of the matrix of transfer functions. If the

sources are too close to one another or the receivers are too close to one another, then

the determinant of the matrix is close to zero, making the matrix ill-conditioned. If the

matrix is not ill-conditioned, however, the computation of its inverse is stable and the

unique solution of a vector of the original signals can be produced.

Further generalizing the problem of �nding and inverting the room transfer functions

to accommodate mobile sources results in a �nite convolution with more terms than with

a non-mobile source, which in turn requires taking two Laplace transforms to result in

an equation for the original signal. This doubly transformed signal can be transformed

by taking the inverse Laplace transform with respect to the second transform variable,

and then with respect to the �rst transform variable. The analytic form of this signal

is very complex, if it exists at all. The inverse Laplace transform may have to be taken

numerically in order to yield a result.

The di¢ culty in implementing these analytic solutions is quite clear from the graphs

of the transformed received signals presented in Chapter IV. Because of the enormous

number of calculations required to compute the transfer functions of the room, a reliable

solution cannot be found using the code in Appendix A, and so a better program must be

developed for �nding these transfer functions numerically.
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5.3 Recommendations for Future Research

Given the sheer volume of assumptions made in this thesis, there are countless av-

enues of research opportunity available in this �eld. The assumption of point sources

and receivers is highly invalid in real-life acoustics when dealing with human vocal signals.

Since the human head is not best described as a point source, the signals propagated from

a human mouth are not omnidirectional. The shape of the throat and mouth acts as an

antenna, shaping and directing the signal in the direction the head is facing. Furthermore,

microphones are of a de�nite size, and so they cannot be considered as point receivers, but

as directionalized receivers. After all, human ears act as antennae in receiving the signals,

making the reception directionalized. Modifying the wave equation in a way that accounts

for these changes in signal sources and receivers would yield a more accurate result.

Exploring the nature of the matrix of transfer functions is another area of possible

research opportunity. If a matrix is ill-conditioned, or is even noninvertible, other methods

than inversion are possible to �nd the solutions. Using the Moore-Penrose pseudoinverse

is discussed in Chapter III as a way of �nding these solutions, but if the matrix is ill-

conditioned, even these pseudoinverses require other transformations, such as a singular-

value decomposition or a QR decomposition. Finding a method of solving problems of this

type could be crucial in situations where the location of the sources and receivers cannot

be changed, but must be accepted, such as the intelligence gathering scenario.

More importantly, the research in the aforementioned �elds is useless without a

proper implementation. A more e¢ cient computer program must be developed based on

the �ndings of whatever research is conducted. Perhaps using a di¤erent programming

language would be bene�cial to the e¢ ciency of the method, such as using C, where

the programs can be compiled to run faster. Once the programs are running faster, it

is easier to implement more accurate computations, where the transfer function can be

computed with more than two million cycles, as it is done in the code written for this

thesis. Furthermore, the use of experimental data will be very helpful in implementing

these codes. Not only would the implementation be used to actually invert the e¤ects of

the room on a signal, but the actual data would include the directionalized nature of both

the sources and the receivers, giving a more accurate result. The lack of experimental
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data in this thesis greatly diminishes the applicable value, but the groundwork for future

experiments is now laid.
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Appendix A. MATLAB Code

This appendix contains the code for �nding the transfer function of a room and produces

the signal received by a microphone located at the user speci�ed location.. The �rst

section contains the program for a single source and single receiver. The second code is a

program that �nds the Laplace transform of a signal numerically.

A.1 Single Source, Single Receiver Transfer Function Program

clear

clear

H=3;

L=10;

W=10;

xr1=2;

yr1=2;

zr1=2;

xs1=0;

ys1=9;

zs1=2.9;

bx=10;

by=10;

bz=10;

c=374;

v=-20000:10:20000;

for i=1:4001

sum(i)=0;

sumplus(i)=0;

end
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for i=1:4001

for l=1:10

for m=1:10

for n=1:10

num=(sin(n*pi*xr1/W)+(n*pi/bx/W)*cos(n*pi*xr1/W))*

(sin(m*pi*yr1/L)+(m*pi/by/L)*cos(m*pi*yr1/L))*

(sin(l*pi*zr1/H)+(l*pi/H/bz)*cos(l*pi*zr1/H))*

(sin(n*pi*xs1/W)+(n*pi/W/bx)*cos(n*pi*xs1/W))*

(sin(m*pi*ys1/L)+(m*pi/L/by)*cos(m*pi*ys1/L))*

(sin(l*pi*zs1/H)+(l*pi/bz/H)*cos(l*pi*zs1/H));

den(i)=(((.5+bx^2*W^3/(2*(n*pi)^2))*

(.5+by^2*L^3/(2*(m*pi)^2))*

(.5+bz^2*H^3/(2*(l*pi)^2)))*

(v(i)^2+c^2*((l*pi/H)^2+(m*pi/L)^2+(n*pi/W)^2)));

sumplus(i)=sum(i)+num/den(i);

sum(i)=sumplus(i);

end

end

end

end

A.2 Numerical Laplace Transform Program

clear

t=0:.0001:5;

for i=1:50001

chirp(i)=sin(2*pi*t(i)^2);

end

for i=1:4001

lchirp(i)=0;
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lchirpplus(i)=0;

end

v=-20000:10:20000;

for i=1:4001

for j=1:50001

lchirpplus(i)=lchirp(i)+exp(-v(i)*t(j))*chirp(j);

lchirp(i)=lchirpplus(i);

end

end

figure

plot(t,chirp)

figure

plot(v,lchirp)
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